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Glossary

Complex disease: refers to any disease having some genetic component of

etiology that is characterized as involving the effects of many genes. Complex

diseases are typically common in the population, exhibit complex patterns of

inheritance, and often involve the interaction of genetic and environmental

factors.

Driver mutation: somatic mutations implicated as having a causal role in the

pathogenesis of cancer.

Evolutionary retention: a position-specific measure of conservation taking into

account the number of times a human amino acid position is missing a

homolog in the multiple sequence alignment with other species.

Exome: the complete collection of (known) exons that ultimately constitute

proteins expressed by an individual.

Genetic drift: the change in the population frequency of alleles due to random

sampling of neutral or effectively neutral alleles.

Mendelian disease: a genetic disease trait exhibiting a Mendelian inheritance

pattern for an underlying mutation at a single genetic locus.

Passenger mutation: somatic mutations observed in cancer cell genomes that

do not contribute to cancer pathogenesis. Can be seen in high frequencies in

tumors if they occur in the same lineage as driver mutations that contribute to

the clonal expansion of the cancer cell lineage.

Purifying selection: a type of directional evolutionary selection that acts to

remove deleterious alleles from a population.
Modern technologies have made the sequencing of per-
sonal genomes routine. They have revealed thousands
of nonsynonymous (amino acid altering) single nucleo-
tide variants (nSNVs) of protein-coding DNA per ge-
nome. What do these variants foretell about an
individual’s predisposition to diseases? The experimen-
tal technologies required to carry out such evaluations at
a genomic scale are not yet available. Fortunately, the
process of natural selection has lent us an almost infinite
set of tests in nature. During long-term evolution, new
mutations and existing variations have been evaluated
for their biological consequences in countless species,
and outcomes are readily revealed by multispecies ge-
nome comparisons. We review studies that have inves-
tigated evolutionary characteristics and in silico
functional diagnoses of nSNVs found in thousands of
disease-associated genes. We conclude that the patterns
of long-term evolutionary conservation and permissible
sequence divergence are essential and instructive mo-
dalities for functional assessment of human genetic
variations.

Evolutionary genomic medicine
Thousandsof individuals in thegeneral publichavebegunto
gainaccess to their genetic variationprofilesbyusingdirect-
to-consumer DNA tests available from commercial vendors;
these tests profile hundreds of thousands of genomic mar-
kers at a cost of a few hundred dollars (Figure 1a). Through
this genetic profiling individuals hope to learn about not
only their ancestry but also about genetic variations under-
lying their physical characteristics and predispositions to
diseases. In biomedicine, scientists have been profiling ge-
nome-widevariations inhealthyanddiseased individuals in
a variety of disease contexts and populations. This has led to
the discovery of thousands of disease-associated genes and
DNA variants [1–6]. Meanwhile, following sharp declines in
the per-base cost of sequencing, complete genomic sequenc-
ing of individuals and cohorts is underway and expanding
{[7–11]; 1000 Genomes Project (www.1000genomes.org);
Personal Genomes Project (www.personalgenomes.org)}.
Taken together, these efforts have begun to paint a more
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robust picture of the amount and types of variations found
within and between human individuals and populations.
Any one personal genome contains more than a million
variants, the majority of which are single nucleotide var-
iants (SNVs) (Figure 1b). With the complete sequencing of
each new genome, the number of novel variants discovered
is decreasing, but the total number of known variants is
growing quickly (Figure 2a). Our knowledge of the number
of disease genes and the total number of known disease-
associated SNVs has grown with these advances [12].

Today, the vast majority of the known disease-associat-
ed variants are found within protein-coding genes
(Figure 1c) although genome-wide association studies be-
ginning to reveal thousands of non-coding variants. Pro-
teins are encoded in genomic DNA by exon regions, and
these comprise only �1% of the genomic sequence (exome;
Glossary) [11,13]. It is this part of our genome for which we
have the best understanding of how DNA sequence
relates to function, and is arguably the best chance to
connect genetic variations with disease pathophysiology.
The exome of an individual carries about 6000–10 000
Somatic mutation: a change in the genetic structure that is neither inherited

nor passed to offspring.
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Figure 1. Profiles of personal and population variations. (a) Counts of different types of genetic variants profiled by 23andMe using the Illumina HumanOmniExpress

BeadChip. 733 202 SNP identifiers (rsIDs) were retrieved from the Illumina website and mapped to the dbSNP database. Cross-referenced by rsIDs, disease-related variants

were determined using data from the HGMD [12] and VARIMED [96] datasets. (b) The numbers of different types of variants found per human genome [97]. (c) The numbers

of known non-synonymous single nucleotide variants (nSNVs) in the human nuclear and mitochondrial genomes that are associated with Mendelian diseases, complex

diseases, and somatic cancers. Compared to complex diseases and somatic cancers, nSNVs related to Mendelian diseases account for the most variants discovered to date.

Data were retrieved from HGMD [12], VARIMED [96], COSMIC [98], MITOMAP [41], and HapMap3 [99] resources. (d) The number of nSNVs in each gene related to

Mendelian diseases. The majority of genes have only one or a few mutations, whereas some genes host hundreds or even more than 1000 mutations. Data were retrieved

from HGMD. The numbers of variants in panels (a–c) are on a log10 scale. Information for disease-associated variants is shown in red and the personal and population

variations are shown in blue.
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amino-acid-altering nSNVs [2,7,9,10,14]. These protein
alleles are already known to be associated with more than
1000major diseases [12]. A large number of exome projects
are poised to reveal protein mutations of tens of thousands
of individuals from disease cohorts and healthy popula-
tions for disorders of various complexities [11,15–17]. With
the sequencing of each new exome we are currently discov-
ering hundreds of new nSNVs, and this points to the
existence of a large number of different protein alleles in
the genomes of humans (Figure 2b). In addition to the
variations arising in the germline, protein-coding regions
of somatic cancer cells contain tens of thousands of non-
synonymous mutations of somatic and germline mutation-
al origins (Figure 1c). Adding to the variation in the
nuclear genetic material are mutations in the mitochon-
drial genome, many of which are also implicated in dis-
eases (Figure 1c).

Translating a personal variation profile into useful
phenotypic information (e.g. relating to predisposition to
disease, differential drug response, or other health con-
cerns) is a grand challenge in the field of genomicmedicine.
Genomic medicine is concerned with enabling healthcare
that is tailored to the individual based on genomic infor-
378
mation [18]. This is a daunting task because common
variants derived from large population-based studies typi-
cally describe relatively small proportions of disease risk.
In addition, each individual genome carries many private
variants that are not typically seen in a limited sampling of
the human populations. Although only a small fraction of
all personal variations are likely to modulate health, the
sheer volume of genomic and exomic variants is far too
large to apply traditional laboratory or experimental tech-
niques to aid in their diagnosis. Higher-throughput tech-
niques are now becoming available to evaluate the
functional consequences of hundreds of specified mutant
proteins, or much greater numbers of random mutants.
However, these methods are still inadequate to handle the
volume of variation information arising from modern se-
quencing methods in a scalable or economical manner [19–

23].
Fortunately, results from the great natural experiment

of molecular evolution are recorded in the genomes of
humans and other living species. All new mutations and
pre-existing variations are subjected to the process of
natural selection which eliminates mutants with negative
effects on phenotype. Variants escaping the sieve of
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Figure 2. Novel SNV discovery with genome and exome sequencing. (a) The

number of novel SNVs discovered by sequencing one or more genomes [97]. With

increasing numbers of genomes sequenced, the number of novel SNVs decreases

(bars), whereas the cumulative count of SNVs increases (filled circles). (b) The

number of nSNVs discovered by sequencing one or more exomes [14]. With more

exomes sequenced, the number of novel SNVs discovered decreases (bars) and

the cumulative count of nSNVs increases (filled circles). Panels (a) and (b) are

redrawn with permission from [97] and [14], respectively.
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natural selection appear in the form of differences among
the genomes of humans, great apes, and other species.
Throughmultispecies comparisons of these data, using the
models andmethods of molecular evolution, it is possible to
mine this information and evaluate the severity of each
variant computationally (in silico). With the availability of
a large number of genomes from the tree of life it is
becoming clear that evolution can serve as a type of tele-
scope for exploring the universe of genetic variation. In this
evolutionary telescope, the degree of historical conserva-
tion of individual position (and regions) and the sets of
substitutions permitted among species at individual posi-
tions serve as two lenses. This tool has the ability to
provide first glimpses into the functional and health con-
sequences of variations that are being discovered by high-
throughput sequencing efforts. Consequently, phylomedi-
cine will emerge as an important discipline at the inter-
section ofmolecular evolution and genomicmedicine with a
focus on understanding of human disease and health
through the application of long-term molecular evolution-
ary history. Phylomedicine expands the purview of
contemporary evolutionary medicine [24–28] to use evolu-
tionary patterns beyond the short-term history (e.g. popu-
lations) by means of multispecies genomics [29,30].

In the following we review scientific investigations that
have analyzed the evolutionary properties of disease-asso-
ciated nSNVs and predicted function-altering propensities
of individual variants in silico using multispecies data. We
have primarily focused on variants of exomes because the
function of proteins is currently best understood indepen-
dently of comparative genomics. Furthermore, protein
point mutations are associated with more than 1000 major
diseases, and generally with a statistically significant
association beyond chance alone. Furthermore, the cost
of exome sequencing is declining to the point that a legion
of small scientific laboratories are now able to economically
profile complete exomes [17,31,32]. Therefore, the chosen
emphasis on exome variations reflects current directions in
clinical and research applications of genomic sequencing.

Mendelian (monogenic) diseases
For centuries it has been known that particular diseases
run in families, notably in some royal families where there
was a degree of inbreeding. Once Mendel’s principles of
inheritance became widely known in the early 1900s it
became evident from family genealogies that specific heri-
table diseases fit Mendelian predictions. These are termed
Mendelian diseases (reviewed in [33]). Such diseases can
have substantial impact on the affected individual but tend
to be rare, on the order of one case per several thousand or
several tens of thousands of individuals.

Over the last three decades mutations in single (candi-
date) genes inmany families have been linked to individual
Mendelian diseases (e.g. Box 1). Sometimes more than a
hundred SNVs in the same gene have been implicated in a
particular disease (Figure 1d). For example, by the turn of
this century, individual patient and family studies
revealed that over 500 different nSNVs in the cystic fibro-
sis transmembrane conductance regulator (CFTR) gene
can cause cystic fibrosis (CF). This enabled first efforts
to examine evolutionary properties of the positions harbor-
ingCFTR nSNVs [29]. The disease-associated nSNVs were
found to be overabundant at positions that had permitted
only a very small amount of change over evolutionary time
[29] (Figure 3a, b). Soon after, this trend was confirmed at
the proteome scale in analyses of thousands of nSNVs from
hundreds of genes (Figure 3c) [34–37]. These patterns were
in sharp contrast to the variations seen in non-patients,
which are enriched in the fast-evolving positions
(Figure 4a) [29,35]. In population polymorphism data,
faster-evolving positions also show higher minor-allele
frequencies than those at slow-evolving positions [29,35],
which translates into an enrichment of rare alleles in
slowly evolving and functionally important genomic posi-
tions [38].

Looking at patterns of evolutionary retention at posi-
tions, another type of evolutionary conservation, a similar
pattern was found: positions preferentially retained over
the history of vertebrates weremore likely to be involved in
Mendelian diseases as compared to the patterns of natural
variation (Figure 4b) [35]. Somatic mutations in a variety
of cancers have also been found to occur disproportionately
at conserved positions [39,40]. A similar pattern has
emerged for mitochondrial disease-associated nSNVs [41].

The relationship between evolutionary conservation
and disease association has been explained by the effect
of natural selection [29,34–37]. There is a high degree of
purifying selection on variation at highly conserved posi-
tions because of their potential effect on inclusive fitness
(fecundity, reproductive success) due to the functional
importance of the position [29,34,35,37,38]. At the
379



Box 1. Variation in the dihydroorotate dehydrogenase 1 (DHODH) protein found in individuals suffering from the Miller

syndrome

Miller syndrome is a rare genetic disorder characterized by distinctive

craniofacial malformations that occur in association with limb abnorm-

alities (Figure I on the left; reproduced with permission from [102]). It is

a typical Mendelian disease that is inherited as an autosomal recessive

genetic trait. By sequencing the exomes of four affected individuals in

three independent kindreds, ten mutations in a single candidate gene,

DHODH, were found to be associated with this disease [102]. In the

figure on the right, the ten mutations are shown in the context of the

DHODH orthologs from six primates (including human) and the timing

of their evolutionary relationships (timetree from [57]). They are in

slow-evolving sites that are highly conserved not only in primates, but

also among distantly related vertebrates. Specifically, 50% of these

mutations are found at completely conserved positions among 46

vertebrates, including human. The average evolutionary rate, estimated

using methods in [57], for sites containing these disease-related

mutations is 0.50 substitutions per billion years, which is �40% slower

than those sites hosting four non-disease-related population poly-

morphisms of DHODH available in the public databases. Biochemically,

the average severity of these ten mutations is more than twice that of

the four population polymorphisms, as measured using the Gran-

tham’s [54] index (112 and 55, respectively). PolyPhen-2 [103], a

computational program used to predict the propensity of individual

amino acid changes to damage protein function, diagnosed all ten

mutations to be potentially damaging and the four population

polymorphisms to be benign. This case study demonstrated clear

patterns of long-term evolutionary conservation for Mendelian disease-

linked variations, and the promising applications of in silico tools in

assisting functional diagnosis.[(Box_1)TD$FIG]
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Figure I. Disease-associated genetic variants identified in patients with Miller syndrome.
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faster-evolving positions, many substitutions have been
tolerated over evolutionary time in different species. This
points to the ‘neutrality’ of some mutations that spread
through the population primarily by the process of random
genetic drift and appear as fixed differences between spe-
cies. Therefore, fewer mutations are culled at fast-evolving
positions, producing a relative under-abundance of disease
mutations at such positions. Of course, the above argu-
ments hold true only when the functional importance of a
position has remained unchanged over evolutionary time,
an assumption that is expected to be fulfilled for a large
fraction of positions in orthologous proteins.

Multigenic (complex) diseases
Despite successes in identifying and mapping genes caus-
ing Mendelian diseases, it is now clear that most common
diseases with significant genetic components, although
they are often seen to cluster in families, do not approxi-
mate to the simple paradigm of high penetrance based on a
dominant/recessive genotype. Instead, common diseases
appear to result from a more complex pattern where many
genes, and probably other non-genetic factors, contribute
in non-additive ways, and individual monogenic factors
have a low and inconsistent correlation with the disease
phenotype [42–44]. Examples of such diseases include
heart disease, asthma, rheumatoid arthritis, and type 2
diabetes [45–49]. These diseases often appear relatively
later in life, and the associated nSNVs are often present in
one or more human populations at substantial frequencies.

An early examination of the evolutionary patterns of the
occurrence of a small set of 37 nSNVs associated with
complex diseases did not find any tendency for these
380
variations to occur at sites with high conservation
(Figure 4c) [37]. These trends were confirmed with larger
datasets containing alleles associated with seven complex
diseases [50]. These patterns stand in stark contrast to
those seen for Mendelian diseases. At the level of overall
rate of protein evolution, the genes associated with com-
plex diseases are not under strong purifying selection as
compared to the proteins implicated in the Mendelian
diseases [51]. The rate of nonsynonymous substitutions
in complex-disease genes is more than twice that of the
Mendelian disease genes [52]. One reason for the lack of
evolutionary conservation of positions associated with
complex diseases is that their effects appear later in life,
which means that these variants are frequently inherited
without being acted upon by natural selection and without
any impact on fecundity. For this reason, molecular evolu-
tionary analyses are sometimes not deemed to be useful for
complex diseases [53].

Evolutionary and biochemical constraints on disease-
associated nSNVs
In addition to the evolutionary conservation of the posi-
tions in the protein, the biochemical properties of the
amino acid change can also provide rich information.
Not all changes at a position have an equal effect because
one set of amino acid alternatives could be optimal, another
set tolerable, and a third crippling to protein structure and
function. Although the actual effect of a mutation is
expected to be a complex function of the protein structure
and its cellularmilieu, many biologists have used a simple
measure of biochemical difference (Grantham distance
[54]) to quantify the severity of amino acid changes. In
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Figure 4. The enrichment of disease-associated nSNVs (red) and the deficit of

population polymorphisms (blue) in human amino acid positions (a) evolving with

different rates and (b) with differing degrees of insertions/deletions [35]. In both

cases, smaller numbers on the x axis correspond to more conserved positions.

There is an enrichment of disease-associated nSNVs and a deficit of population

nSNPs in conserved positions. This trend is reversed for the fastest-evolving

positions. (c) The cumulative distributions of the evolutionary conservation scores

for nSNVs associated with Mendelian diseases (solid red line), complex diseases

(open red circles), and population polymorphisms (green line). The shift towards

the left in Mendelian nSNVs indicates higher position-specific evolutionary

conservation. Conversely, a shift towards the right in complex disease nSNVs

indicates lower evolutionary conservation, which overlaps with normal variations

observed in the population. Data for the neutral model (black line) were generated

by simulation [37]. Panels (a–c) are redrawn with permission from [35], [35], and

[37], respectively.
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nonsynonymous single nucleotide variants (nSNVs). (a) The observed and
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with different evolutionary rates in the CFTR protein [29]. The disease-associated

nSNVs are enriched in positions evolving with the lowest rates, which belong to

the rate category 0. (b) The ratio of observed to expected numbers of nSNVs in

different rate categories for all CFTR variants (solid pattern; 431 variants) and those

reported in publications profiling one or more families (hatched pattern; 59

variants). Data and publications were obtained from HGMD for all variants with a

deposition date up to and including the year 2000. This comparison shows that the

initial practice of the use of all available variants, including those reported by

clinicians from individual patients (>80% of the variants), did not bias the observed

trends. (c) The proteome-scale relationship of the observed/expected ratios of

Mendelian disease-associated nSNVs in positions that have evolved with different

evolutionary rates. The results are from an analysis of disease-associated nSNVs

from 2717 genes (public release of HGMD). Just as for individual diseases, nSNVs

are enriched in positions evolving with the lowest rates. Panel (a) is redrawn with

permission from [29].
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an analysis of seven genes it was noted early on that amino
acid changes ofMendelian disease-associated nSNVswere,
on average, 67% more severe than substitutions observed
between species in the same proteins [29]. The generality
of this trend was confirmed in subsequent analyses of a
larger number of Mendelian disease genes [34,35]. Inter-
estingly, the timing of the onset of a disease also shows a
correlation with the biochemical severity of an amino acid
change: late-onset diseases involve amino acids with smal-
ler biochemical differences [35]. Similarly, the severity of
the phenotype also shows a relationship with the biochem-
ical dissimilarity of the variation (e.g. [55]). In addition, the
severity of Mendelian nSNVs has been quantified by using
the substitution probability of one amino acid into another.
These analyses show that disease-associated nSNVs are
amino acid changes that are unlike those observed between
species proteome-wide (e.g. [29,34]).
381
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A large number of Mendelian disease-associated varia-
tions occur at positions that show evolutionary substitu-
tions among species. For example, more than a hundred
variants of the CFTR protein in CF patients occur at
positions that have undergone at least one change
382
(Figure 3a). In any position, evolutionary differences (sub-
stitutions) between species are expected to be neutral in
nature, in other words they are unlikely to have negative
fitness effects provided that the protein function has not
changed. They constitute a set of evolutionarily permissi-
ble alleles (EPAs) at a given position, which are expected to
not be involved in diseases at those positions. Indeed, an
overwhelming fraction of Mendelian nSNVs (�90%) are
not evolutionarily permissible [35,55,56]. This is in sharp
contrast to population polymorphisms that frequently
(59%) appear in the set of EPAs in individual positions
[57]. Disease-associated nSNVs in mitochondrion-encoded
proteins also show similar patterns [58].

Nevertheless, scientists have been interested in inves-
tigating why some nSNVs are associated with diseases in
humans, but appear as natural alleles in other species
[35,56,58,59]. One possibility is that the function of the
affected amino acid position has changed either in humans
or in other species. In this case, evolutionary differences
among species cannot be used to determine permissible
amino acids at the affected positions. Another reason for
the overlap between the disease nSNVs and evolutionarily
permissible alleles is that the amino acid position has
undergone compensatory changes. In this case the nega-
tive effects of the mutation(s) at one position of the same or
different proteins compensates for the negative effects of
the other mutation [35,56,59–61]. Such compensation
could occur, for example, by antagonistic pleiotropy
[62,63] or for protein functional reasons (e.g. [64,65]).
Whatever the reason, the initial mutation needs to escape
natural selection for a period of time before it is compen-
sated by another mutation in the same or another protein.
This is likely to be possible only for mutations that have
very small negative fitness effects, resulting in such muta-
tions occurring at faster-evolving positions that are bio-
chemically less radical (e.g. [35]).

Evolutionary diagnosis of function-altering mutations
in silico

Over a decade ago, first methods were proposed to predict
computationally whether a mutation will negatively affect
the structure and function of a human protein [30,66–68].
These methods, now part of the PolyPhen software pack-
age, employed physical properties of the mutational
change along with a multispecies alignment as a basis
to evaluate mutations. This method showed promise: 69%
of mutations associated with human disorders could be
correctly diagnosed to be damaging to protein function
(true positives) and 66% of known population polymorph-
ismswere correctly diagnosed as non-damaging (true nega-
tives) [67]. Most recently, a true-positive rate of 92% was
achieved by PolyPhen-2 when only damaging alleles with
known effects on the molecular function causing Mende-
lian diseases were tested [63], which reduced to 73% when
all human disease-associated mutations were analyzed.
The false-positive rate was close to �20% for PolyPhen-2.

Another early method [sorting intolerant from tolerant
(SIFT)] employed multispecies alignments to distinguish
between functionally neutral and deleterious amino acid
changes [69]. Applications of SIFT and PolyPhen/Poly-
Phen-2 to predict well-characterized variants in selected
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sets of genes revealed similar true-positive rates for the
two programs [70,71], but these investigations revealed
much higher false-positive rates (up to 68%). Comparative
analyses have also revealed that the prediction accuracy of
in silico tools depends on both the algorithm and the
sequence alignment employed [71–73], with predictions
from the PolyPhen-2 showing the least dependence on
the alignment employed.

Over the years these in silico prediction tools have
frequently been employed to predict the proportion of
benign mutations in newly sequenced human genomes
and to prioritize polymorphisms for further experimental
research in humans and other species [74–81]. In all of
these investigations the focus has been on diagnosing
monogenic disease mutations because in silico tools based
on evolutionary considerations are not expected to be
effective for identifying nSNVs associated with complex
diseases. The patterns of evolutionary conservation of
known complex disease nSNVs are no different from those
of natural polymorphisms found among populations
(Figure 4c).

Even for Mendelian disease mutations, in silico diagno-
sis has been challenging because the diagnoses from dif-
ferent programs are not the same for the same variant. For
example, PolyPhen and SIFT diagnoses for protein-alter-
ing mutations in the Venter genome disagreed more often
than they agreed [2] (Figure 5a). Because of such problems,
efforts have gone into the development of composite and
ensemble methods that: (i) incorporate increasingly larger
numbers of clinical and biological attributes in the deci-
sion-making process, and (ii) combine the results from
existing tools by using logistic regression, Bayesian neu-
tral networks, decision trees, support vector machines,
random forests, and multiple selection rule voting [82–

85]. These efforts are beginning to improve prediction
accuracy significantly, and one recent method combining
many less successful methods into a new composite ap-
proach was found to outperform each method used sepa-
rately (Figure 5b) [85].

Many evolutionary features used by classical and ad-
vanced versions of SIFT and PolyPhen (among others) for
diagnosing Mendelian disease variants are also discrimi-
natory for differentiating between driver and passenger
mutations [39,86]. This prompted the development of a
hybrid method, CanPredict [86], that integrated gene
function information (e.g. gene ontology) to screen somatic
mutations (also [87]). This tool diagnoses mutations found
in samples of more than ten patients to be damaging 50%
more often than mutations that were seen in only one
patient [86]. Driver mutations contribute to cancer pro-
gression and have a tendency to be found in many inde-
pendent samples as compared to passenger mutations
that, as the name suggests, hitchhike causing the cells
with driver mutations to increase in number by the pro-
cesses of natural selection and adaptation [39,40,88–90].
For mitochondrial DNA (mtDNA), four different tools (in-
cluding PolyPhen and SIFT) have been combined along
with the biochemical features and frequency of variants to
evaluate mitochondrial nSNVs [91]. This approach was
adopted because only 5% of disease-associated nSNVs in
mtDNA were found to be harmful by all four in silico
methods, even though each of these SNVs was predicted
to be damaging by at least one method [91].

Efforts have beenmade to identify a priori determinants
of the protein position where in silico tools will most
probably succeed [57]. This knowledge will empower biol-
ogists to quantify the reliability of inference and use the in
silico predictions only when they are expected to be reli-
able. Initial research has revealed a clear-cut relationship
between the sensitivity (true-positive diagnosis) and spec-
ificity (true-negative diagnosis) of predictions with the rate
at which the given position has evolved over species as
diverse as fish and lamprey. The disease-associated nSNVs
at slow-evolving positions were more likely to be diagnosed
correctly than those at fast-evolving positions (Figure 5c).
This is consistent with earlier findings that the evolution-
ary rate is overwhelmingly the most important determi-
nant of the accuracy of in silico prediction methods [92,93].
It is also clear that the accuracy of in silico tools is severely
degraded when the observed disease-associated variant is
found in other species at the same position [57]. Therefore,
the in silico diagnosis failures are systematic and are
probably predictable.

By using evolutionary rates derived from multispecies
analyses a priori, it should be possible to develop adaptive
classifiers that have potential to generate more reliable
predictions based on the evolutionary context of specific
positions. Because high-quality genomic alignments be-
tween human and many closely and distantly related
species are publicly available, it is possible to enumerate
eachmultispecies aligned position in the human genome to
compute position-specific features such as evolutionary
rate of change. These pre-computed evolutionary features
could be incorporated into prediction methods to adaptive-
ly adjust the classifier thresholds to optimize for the type of
nSNVs that are likely to be observed. For example, fast-
evolving positions are expected to harbor a higher propor-
tion of neutral nSNVs, and thresholds could therefore be
fine-tuned to improve overall accuracy.

Concluding remarks
The cosmic analogy used in the title of this review is
intended to convey the enormity of the challenge that
researchers in genomic medicine face as they attempt to
decipher the functional consequences of the constellation of
genomic changes carried in each personal genome. In
tackling this challenge the evolutionary telescope is among
a set of initial tools to generate functional predictions.
Clearly, the progress made to date prompts enthusiasm,
but there is an urgent need to develop better in silico
approaches to aid and complement the array of experimen-
tal, clinical, and physical tools that must be combined to
assay accurately the diversity of the functional effects of
the variants present in the human population and of the de
novo mutations that continually arise in the natural pro-
cesses of cell division and population propagation.

Many limits to the use of the evolutionary approaches in
genomic medicine are already evident. As mentioned ear-
lier, in silico analysis of nSNVs underlying complex dis-
eases remains a major challenge. Furthermore, there are
few cases when disease categorization can be seen as a
black and white decision: diseases represent a continuum
383
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from predominately monogenic to highly polygenic [94].
Some classical monogenic diseases will surely be caused by
mutations in multiple genes, whereas some classic poly-
genic diseases will have a few major effect alleles. This
complicates the choice of when to apply evolutionary
knowledge in diagnosing the function-altering potential
of variants. The distinction between the neutrality and
non-neutrality of function alteration is also not straight-
forward because it depends on both environmental and
genomic contexts (e.g. compensatory mutations) and could
well involve fitness trade-offs (e.g. between rapid matura-
tion and risk of disease). Moreover, the extent to which
personal variations manifest themselves as health con-
cerns in individuals remains unknown. With an enhanced
quantification of health and disease, and an improved
understanding of genome and disease biology, we will have
a better idea of the powers and pitfalls of evolutionary
analysis in genomic medicine. At the same time there is a
need to profile exome variants experimentally and connect
them with individual health via predictive frameworks.
Some cell-based and in vitro assays are already showing
promise in deciphering the pathogenic roles of variants in
cancers [23,95], an important step forward towards satis-
fying the urgent need for the development of higher
throughput biological and functional approaches.

Nonetheless, the rapid emergence of clinical genome
sequencing has established a pressing need to incorporate
evolutionary information into clinical diagnostics. An in-
dividual genome contains hundreds of thousands of var-
iants of different antiquities, and the long-term
evolutionary history of genomic positions provides an im-
mediate means to derive and apply predictive and quanti-
tative assessement of the potential functional effect of any
given variant observed. Using the evolutionary anatomies
of positions, clinicians can be provided with ready access to
evolutionary-guided in silico diagnostic tools to identify
and diagnose the observed variants that are most likely to
have consequences for the health or clinical course of
treatment for a patient.
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