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Molecular clocks have been used to date the divergence of humans
and chimpanzees for nearly four decades. Nonetheless, this date
and its confidence interval remain to be firmly established. In an
effort to generate a genomic view of the human–chimpanzee
divergence, we have analyzed 167 nuclear protein-coding genes
and built a reliable confidence interval around the calculated time
by applying a multifactor bootstrap-resampling approach. Bayes-
ian and maximum likelihood analyses of neutral DNA substitutions
show that the human–chimpanzee divergence is close to 20% of
the ape–Old World monkey (OWM) divergence. Therefore, the
generally accepted range of 23.8–35 millions of years ago for the
ape–OWM divergence yields a range of 4.98–7.02 millions of years
ago for human–chimpanzee divergence. Thus, the older time
estimates for the human–chimpanzee divergence, from molecular
and paleontological studies, are unlikely to be correct. For a given
the ape–OWM divergence time, the 95% confidence interval of the
human–chimpanzee divergence ranges from �12% to 19% of the
estimated time. Computer simulations suggest that the 95% con-
fidence intervals obtained by using a multifactor bootstrap-
resampling approach contain the true value with >95% probabil-
ity, whether deviations from the molecular clock are random or
correlated among lineages. Analyses revealed that the use of
amino acid sequence differences is not optimal for dating human–
chimpanzee divergence and that the inclusion of additional genes
is unlikely to narrow the confidence interval significantly. We con-
clude that tests of hypotheses about the timing of human–chimpan-
zee divergence demand more precise fossil-based calibrations.

Bayesian analysis � molecular clock � hominid � fossil � primate

Determining the age of the most recent common ancestor of
humans and their closest African ape relatives has been the

subject of scientific inquiry for over a century. This age is
important for assessing the evolutionary rate of morphological
and molecular changes in humans, assigning key fossils in
hominoid phylogeny, and estimating when the common ancestor
of all humans lived. The paleontological approach has been
hampered by the paucity of fossils of some lineages. The first
chimpanzee fossil, for example, was only just reported in 2005
(1). As recently as the mid-1960s (2), the African apes were
considered to be distant relatives of the human lineage, but
subsequent molecular phylogenetic analyses have shown that the
chimpanzee and human are sister species and have led to a
revision of the age of their divergence (3–13). Currently, the
earliest unequivocal upright hominids at 4.2 millions of years ago
(Ma) provide the minimum age for human–chimpanzee diver-
gence (14), and some recently proposed early hominids dated
between 5 and slightly more than 6 Ma are thought to provide
an estimate close to the actual species divergence (15–19).
However, a divergence time of 12.5 Ma for humans and chim-
panzees has been entertained recently as well (20), and so the
fossil record and its interpretation give a range of 4.2–12.5 Ma.

To employ molecular data to test alternative hypotheses
derived from the fossil record, we require credible confidence
intervals (C.I.s) of the molecular age of human and chimpanzee

divergence. However, studies using molecular data have yielded
disparate values as well (3–13 Ma), because of differences in the
number of genes used, types of substitutions (synonymous,
noncoding, and nonsynonymous) analyzed, calibration points
used, and statistical methods used (3–13). Furthermore, current
estimates of C.I.s of molecular divergence times fail to consider
a comprehensive set of factors contributing to variance, such as
a limited number of genes (gene sampling error), a limited
number of sites for each gene (variance contributed by sequence
divergence-estimation procedures), rate differences among lin-
eages, and inherent uncertainty in the time used for calibrating
lineage-specific and relaxed molecular clocks (21, 22). These
factors point to the need to use a large number of genes and a
closely positioned calibration point to reduce the statistical
variance of the estimated time and increase our power in testing
alternative fossil-based hypotheses.

Therefore, we have assembled a data set containing the largest
number of nuclear genes available to estimate the timing of
human–chimpanzee divergence in reference to the ape–Old
World monkey (OWM) divergence. To build credible C.I.s, we
have developed a multifactor bootstrap-resampling (MBR) ap-
proach that can incorporate the variances mentioned above.
Furthermore, we have conducted computer simulations under
random and correlated deviations from a constant-rate model to
examine the statistical validity of C.I.s generated by the MBR
approach when using a large number of genes for a few species
to date very recent speciation events. This evaluation is partic-
ularly important for the analysis of closely related species,
because tests of rate constancy are often powerless in rejecting
genes in which different lineages evolve at different rates (5, 23).
In the following, we have also compared results obtained by
using different types of point substitutions in the same set of
protein-coding genes, including amino acid sequence differ-
ences, nucleotide substitutions at the second and third codon
positions, and neutral substitutions at 4-fold-degenerate sites
(with and without hypermutable CpG positions).

Materials and Methods
Data Collection. To maximize the number of useable genes and
employ a close primate calibration species for estimating hu-
man–chimpanzee divergence time, we assembled 167 ortholo-
gous protein sequence sets for human (Homo sapiens), chim-
panzee (Pan troglodytes), macaque (Macaca mulatta), and mouse
(Mus musculus), considering their phylogenetic relationships
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(Fig. 1a) (for details see Data Collection in Supporting Text, which
is published as supporting information on the PNAS web site).
Observed distributions of protein lengths (Fig. 1b) and rates
(Fig. 1c, open bars) show considerable variation, as expected.
The protein sequence alignments were used as guides (for codon
boundaries) to generate coding DNA sequence alignments and
evolutionary rates at the third codon positions (Fig. 1c, solid
bars). We identified all third codon positions that were 4-fold-
degenerate in all species for each gene for analysis as well.
Because CpG dinucleotides mutate 7–10 times faster than other
dinucleotides, 4-fold-degenerate sites were separated into those
that were involved in CpG dinucleotides and those that were not
(24, 25).

Estimation of Divergence Times Using Local Clocks. We used a
lineage-specific method with maximum likelihood (ML) estimates
of sequence divergence generated by using PAML 3.14 (26) and the
Bayesian timing method implemented in the MULTIDIVTIME soft-
ware (21). For the ML method (referred to as the ML-distance
approach), we concatenated all sequences into a supergene, esti-
mated branch lengths in the four-species tree using PAML 3.14, and
inferred divergence times in a lineage-specific manner (Fig. 1d). To
estimate evolutionary distances in PAML 3.14, a general time revers-
ible (GTR) model with a gamma (�) distribution describing the rate
variation among sites (GTR��) was used for DNA sequences and
a Jones–Taylor–Thornton (JTT)�� model with a discrete gamma
distribution (with five rate categories) was used for the amino acid
sequences. In the Bayesian analysis, we used the same supergene
described above, with a F84�� model for DNA and a JTT��
model for amino acid sequences, based on the most sophisticated
models available in MULTIDIVTIME software (21).

Estimation of C.I.s. Although the ML-distance and Bayesian
methods provide C.I.s and standard errors for estimated times,
they do not simultaneously incorporate the variances introduced
by the estimation of genetic distances from individual genes,
sampling error due to the use of a limited number of genes, rate
variation among evolutionary lineages (in ML-distance), and the
distribution of uncertainty in calibration times. To do this, we
developed a MBR approach for generating C.I.s in which these
variances can be explicitly incorporated when one uses ML,
Bayesian, or other methods as estimators of time. We chose a
bootstrap, rather than an analytical, approach because it is less
dependent on specific assumptions about the distribution of the
data, and analytical formulations are often too cumbersome to
incorporate phylogenetic correlations (27). The algorithm for
this process and its properties are given in Supporting Text. We
also conducted computer simulations to evaluate the statistical
accuracy of the MBR method in generating an appropriate C.I.
when used in conjunction with the ML-distance and Bayesian
methods for a large number of genes and for only four species
(see Supporting Text).

Results and Discussion
We first used the ML-distance method in which a lineage-
specific molecular clock is applied to estimate the human–

Fig. 1. Characteristics of the data. (a) Phylogenetic relationships of human,
chimpanzee, macaque, and mouse. (b) Histogram showing the length distri-
bution of proteins used. (c) Distributions of the average evolutionary rates of
amino acids (open bars) and third codon positions (solid bars) for 167 protein-
coding genes analyzed in this study. Evolutionary rates were estimated

assuming a 90 Ma date for primate–rodent divergence (5, 22, 46). (d) Sche-
matic showing how lineage-specific molecular clocks were used to estimate
the human–chimpanzee divergence time by using the ML distances between
species pairs. The human–chimpanzee divergence time is given by the fraction
([h � c]�2)�(a � [h � c]�2) of the time assumed for ape–OWM divergence. (e)
Distribution of evolutionary rates among sites for amino acids (dashed curve;
shape parameter � 0.83) and third codon positions (solid curve; shape param-
eter � 1.65) obtained in ML analyses of concatenated sequences (53,008
codons) of 167 protein-coding genes. In each case, modeling the rate variation
among sites by using a gamma distribution produced a significantly better fit
(P � 0.005).
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chimpanzee divergence time (see Fig. 1 and Materials and
Methods). This method requires a priori knowledge of at least
one species divergence time to calibrate the local molecular
clock. We took a conservative approach and used a minimum
date of 23.8 Ma (boundary of the Oligocene and Miocene) for
the ape–OWM divergence (28) (see Supporting Text). We fo-
cused on the minimum time of divergence because the inference
of the true (mean) time of divergence of any two lineages
requires a more robust fossil record for calibration than is
generally available for most groups of organisms, and especially
these primates. Most past molecular clock studies have also
estimated minimum divergence times for this reason (29). In
recent years, many methods have been developed that attempt
to estimate mean times of divergence by specifying both mini-
mum and maximum calibration points. However, whereas most
minimum calibrations are robust, this is not true for maximum
calibrations or the implicit assumption about the probability
density assumed for fossil calibration uncertainty (29). It is
difficult to provide convincing evidence that a phylogenetic
divergence event did not occur earlier than a particular point in
time. Errors in assignment of maximum constraints, whether too
young or too old, will potentially bias the mean time estimate.

Analysis of Third Codon Positions. A likelihood ratio analysis of
third codon positions from 167 genes (53,008 codons) indicated
significant rate variation among sites (Fig. 1e), so we used a
GTR�� model in all further analyses. Using a 23.8 Ma minimum
date for ape–OWM divergence, we obtained an ML-distance
estimate of 4.74 Ma, which is older than the age of 4.2 Ma for the
earliest unequivocal postcranial evidence of upright hominids
(14) but younger than some recently proposed early hominids
dated from between 5 and �6 Ma (15–19).

However, the absolute dates derived above depend directly on
the time used to calibrate the molecular clock, and it is important
to focus on the size of the C.I. relative to the estimate, rather than
on the point estimate of time alone. Using the MBR approach,
we obtain a 95% C.I. of 3.88–5.65 Ma for the minimum date.
This C.I. spans �18% to �19% of the estimated time. Our
computer simulations under equal, random, and correlated
models of rate evolution show that the 95% C.I. generated by
MBR indeed contains the true value �95% of the time when all
third positions are resampled, regardless of gene boundaries
(Fig. 2).

Of all third codon positions, the 4-fold-degenerate sites are
expected to be under the least amount of natural selection. We
divided these sites into those that were involved in CpG dinucle-
otides and those that were not, because the 4-fold-degenerate
sites involved in CpG dinucleotide configurations mutate much
faster (24, 25). Analysis of 19,311 non-CpG 4-fold-degenerate
sites produced an estimate of 4.75 Ma, which is almost identical
to that given by third codon positions, but the 95% C.I. was wider
(�25% to �31%). Because the data set size (in terms of the
number of sites) was the largest for the third codon positions, we
considered only third codon positions in all further DNA
sequence analyses.

Analysis of Nonsynonymous Substitutions. Unexpectedly, ML-
distance analyses of amino acids and second codon positions
yielded estimates of human–chimpanzee divergence that were
�40% larger than those obtained from the third codon positions
and 4-fold-degenerate sites. In fact, neither the estimate ob-
tained using amino acids (6.80 Ma), nor the third-position
estimate (4.74 Ma) fell within the 95% confidence limit of the
other (4.78–8.86 Ma and 3.88–5.65 Ma for amino acids and third
positions, respectively). This finding is surprising because both
DNA and protein substitutions are expected to provide concor-
dant results, especially when using a large number of protein-
coding genes.

A cursory examination of the time estimates based on the rate
of amino acid substitutions revealed a tendency toward larger
estimates for very slowly evolving proteins. The 40 most slowly
evolving proteins (based on evolutionary divergence of human
and mouse proteins) provide an estimate more than three times
higher than the 40 fastest evolving proteins. In contrast, the third
codon position estimates are similar whether obtained from
genes corresponding to proteins evolving with low, medium, or
fast rates and coincide with the estimates obtained from fast-
evolving proteins (Fig. 3). These patterns suggest a dispropor-
tionate inflation of sequence divergence for closely related
species as compared with distantly related species, an effect that
would be the greatest for the most slowly evolving proteins. The
skewed inflation of sequence divergence estimates for closely
related sequences may be attributed to sequencing errors, pres-
ence of ancestral polymorphisms (30), persistence of slightly
deleterious polymorphisms (31, 32), and masking of deleterious
mutations in heterozygotes (33). Although these factors affect all
amino acids and third codon positions, the most slowly evolving
sequences (e.g., highly conserved proteins) are affected the most
relative to their rate and the time of sequence divergence.

Our computer simulations showed that if the cumulative effect
of nonneutral polymorphism due to factors described above
produced, at an average, three differences per 1,000 aa, then an
overestimation pattern similar to the magnitude and trend
observed for the real data would be obtained (Fig. 3, gray area).
Furey et al. (34) have already reported sequencing error rates of
0.5 bp per 1,000 nucleotides for human GenBank data, which
translates to one error per 1,000 aa (because �75% of base pair
errors in three codon positions result in an error at the amino
acid sequence level). Although genomic sequences have a lower
error rate, within-species comparisons in humans indicate a 1 in
1,000 bp difference at the genome level between individuals (35).
This variation contributes nonfixed differences between species

Fig. 2. The percent of simulation replicates in which the 95% C.I. generated
by the MBR method includes the simulated true value using the ML-distance
(filled bars) and Bayesian approaches (open bars). (See Supporting Text for a
description of the rate-variation models and how the data were parameter-
ized.) We simulated 1,000 167-gene equivalent data sets under each rate-
variation regime and conducted MBR analyses to obtain C.I.s for the ML-
distance (GTR��) and Bayesian (F84��) approaches. The results show that
95% C.I.s contain the true value more often than required, particularly for the
ML-distance method. This finding shows that modeling-rate variation among
lineages (as in the Bayesian method) should lead to narrower C.I.s when the
underlying model for correlated evolutionary rates among lineages is satisfied
(constant and correlated rate cases), as compared with the ML-distance ap-
proach, in which rate variation is incorporated into the C.I. instead of being
modeled. Interestingly but not unexpectedly, Bayesian and ML methods
perform similarly when the assumptions of the Bayesian model are not
satisfied (random rate-variation case). This finding is consistent with a study
showing that a Bayesian approach with lognormal rate-variation model does
not accommodate uncorrelated rate variation (47).
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and affects the estimate of human–chimpanzee divergence in the
same way as the sequencing errors. Sequencing error rate for
available chimpanzee sequences is higher than that for humans
(4 times versus 10 times coverage; see Ensembl, www.ensembl.
org), and chimpanzees are known to have a much higher
within-population polymorphism (33), both of which would lead
to an overestimation in the present case.

In addition to the above factors, the fixation of lineage-specific
amino acid substitutions due to positive selection (36) may also
make the use of amino acid sequences problematic. However, it
is unlikely to be the major contributing factor in the present case,
because none of the slowest-evolving proteins in our data set
were found to be involved in host defense, immunity, or olfaction
(36, 37). On the other hand, the most rapidly evolving proteins,
which show estimates similar to those obtained from the third
codon positions, contain a large proportion of genes known to
be candidates for positive selection (which show nonsynonymous
to synonymous substitution ratios of �0.5). In any event, because
of the observed artifact mentioned above, we do not further
consider the estimates based on amino acid sequence analysis.

Bayesian Inference of the Minimum Time for Human–Chimpanzee
Divergence. The relative rate analysis shows that human third
codon positions are 17% more divergent than those of chim-
panzee and that the 4-fold-degenerate non-CpG sites are evolv-
ing �20% more slowly in hominoids than in OWM. Both of these
rate differences are insignificant [P � 0.05 in Tajima’s test (23)]
and are in agreement with those reported elsewhere (33). The
difference between hominoids and OWM is similar in magnitude
to that reported in an analysis of large data sets by Yi et al. (38)
and Kumar and Subramanian (39). It is one-half of that reported
by Steiper et al. (40), whose estimates of relative rates depend on
fossil-based divergence times for within-hominoid and within-
cercopithecoid species, although an outgroup was not used in
their analyses.

In any case, the observation of any rate differences in the

hominoid–OWM comparison means that the ancestral human–
chimpanzee lineage may not be evolving at the same rate as those
leading to humans and chimpanzees, violating the assumptions
made in the ML-distance approach. Therefore, we applied
Bayesian analysis as implemented in MULTIDIVTIME (21) that
models rate variation among lineages to generate a better
estimate of human–chimpanzee divergence. We used 23.8 Ma
for the ape–OWM divergence time as the root-to-tip mean
(RTTM � 23.8) in the MULTIDIVTIME Bayesian analyses to make
results directly comparable to the ML-distance method (see
Supporting Text for parameters used for Bayesian analysis). This
produced an estimate of 4.98 Ma for the third codon positions
and of 5.17 for the 4-fold-degenerate non-CpG sites. These
estimates are marginally higher than those for the ML-distance
estimates, but the discrepancy becomes smaller when we com-
pare the ratio of the times of the target (human–chimpanzee)
and calibration (ape–OWM) divergence events. Even though we
provide an explicit time (RTTM) for the ape–OWM split,
MULTIDIVTIME infers time estimates for both human–
chimpanzee and ape–OWM divergences. These estimates give
consistent ratios of 0.21 (4.98�24.00) and 0.21 (5.17�24.37) for
the third codon positions and the 4-fold-degenerate non-CpG
sites, respectively. In the ML-distance method, the time ratio is
0.20 for the third codon positions (4.74�23.8) and also 0.20
(4.75�23.8) for the 4-fold-degenerate non-CpG sites. Therefore,
the time ratios for the Bayesian estimates are only 5% higher
than are those obtained using the ML approach. Bayesian
methods also produced a narrower 95% C.I. (�12% to �19%)
as compared with the C.I. (�18% to �19%) of the ML-distance
approach for the third codon position data. Our computer
simulations confirmed that the MBR C.I.s contain the true value
with a frequency of �95% in the Bayesian approach as well (Fig.
2). Because the C.I.s generated using the MBR approach with
the Bayesian analysis are smaller, we use them below.

Comparison with Previous Studies. Our minimum estimates of 4.74
and 4.98 Ma from ML-distance and Bayesian methods, respec-
tively, based on the minimum 23.8 Ma date for ape–OWM
divergence, are smaller than many previous molecular time
estimates. There are three primary reasons for this difference.
First, many studies have presented (and sometimes preferred)
the higher divergence times estimated by using the protein
sequences or by using all three codon positions (e.g., refs. 5 and
10). However, as shown above, the inclusion of slowly evolving
amino acid sequences (or first and second codon positions) is
likely to bias time estimates for the human–chimpanzee diver-
gence. This pattern is also seen in the Bayesian analysis of amino
acid sequences, which produces an �60% larger time estimate as
compared with the third codon positions, with a 95% C.I. that
does not overlap with that obtained from the analysis of third
codon positions.

Second, different studies have used vastly different divergence
times (20–35 Ma) for the ape–OWM split to calibrate molecular
clocks. A comparison of the estimated and assumed time ratios
resolves this discrepancy. For example, our ratios from 0.21 to
0.20 are consistent with the 0.21 value reported in analyses
conducted by using �150,000 bp of noncoding data by Stieper et
al. (40), 97 protein-coding genes by Wildman et al. (9), and
complete mitochondrial DNA by Schrago et al. (ref. 41; see also
ref. 7). Therefore, in the absence of a firmly established cali-
bration date, it is better to consider all results as ratios of
human–chimpanzee to ape–OWM divergence times.

Third, most previous studies were based on the analysis of
fewer genes. In those cases, the true C.I. accounting for the
variance from gene sampling, multiple-hit correction, and evo-
lutionary rate differences among species is expected to be rather
large. This effect is evident from the lower and upper limits of
the 95% C.I.s obtained by using smaller random subsets of 167

Fig. 3. Dependence of human–chimpanzee divergence time estimate on the
rate of amino acid sequence evolution when using amino acids (open symbols)
and third codon positions (solid symbols). Each value represents the time
estimate obtained from an analysis of 40 concatenated proteins and is plotted
at the median amino acid distance between human and mouse for that set of
proteins. Proteins were sorted in ascending order based on the human–mouse
amino acid sequence divergence, and ML-distance analyses were performed
on amino acids (JTT��) and third codon positions (GTR��) on sets of 40
proteins in a sliding window that shifted by one protein at a time. The gray
region shows the additional time obtained in computer simulations when
sequencing errors and within-species polymorphisms contributed three
amino acid sequence changes per 1,000 aa, and ML-distance analyses were
conducted on the resulting amino acid sequence alignment following the
procedure described above. The human–chimpanzee divergence times esti-
mated are minimum times because a 23.8 Ma date for ape–OWM divergence
was assumed (see text); however, the shape of the distribution remains
unchanged irrespective of the clock-calibration time used. Similar results were
obtained when using the Bayesian methods (results not plotted).
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genes (Fig. 4). When the number of genes is �10 (e.g., ref. 5),
the 95% C.I. is nearly as large as the time estimate itself. The C.I.
declines to �50% if 50 genes are used (e.g., refs. 7 and 10). With
the use of 100 or more genes, uncertainties contributed by rate
variation among lineages become predominant, and the C.I.
width declines only slowly. Thus, little is to be gained by adding
data from more genes, but using more species may help narrow
the 95% C.I. width in the future.

Incorporating Multiple Fossil Bounds in the Bayesian Inference.
Bayesian methods allow more fossil constraints to be used in
species divergence time estimation, such as a minimum con-
straint of 4.2 Ma (14) for the human–chimpanzee divergence.
After adding this constraint and keeping RTTM � 23.8, we
found that the human–chimpanzee divergence time increased by
53%. However, the ratio of estimated times for ape–OWM and
human–chimpanzee divergences was 0.21, which is the same
ratio obtained without placing the minimum bound on the
human–chimpanzee divergence. Setting RTTM (time for the
common ancestor of human, chimpanzee, and macaque) to 35
Ma in the Bayesian analyses again produced the same time ratio
(0.21), even though the estimate of human–chimpanzee time
became even larger.

To determine which estimates are likely to be correct, we
conducted analyses with and without the human–chimpanzee
constraint of 4.2 Ma for the simulated data under equal, random,
and correlated evolutionary rate variation. [In the random rate
case, the rate at each branch is randomly selected from a uniform
distribution of rates so as to introduce a �40% random noise in
evolutionary rate independently for each gene. In the correlated
rate, the assignment of lineage-specific rate uses a stationary
lognormal distribution in which the rates vary from branch to
branch as a random walk for a given gene, so that rates drift up
or down along the branches of any lineage (42, 43). See Sup-
porting Text.] In all cases, time ratios were recovered with high
accuracy, but the absolute times estimated were strongly depen-
dent on the calibration constraints used in the Bayesian analyses,
as observed in the analysis of the real data.

At this stage, it is important to revisit the distinction between
estimating minimum and true times of species divergence (see
discussions in ref. 29). Clearly, the exclusive use of minimum
calibration times, derived from the fossil record, will produce
only minimum time estimates of the target divergence and its
C.I., irrespective of the sophistication of the methods used (29).

Focusing on minimum time estimates provides at least two
advantages. For one, asserting a minimum time constitutes a
definite, falsifiable statement, namely that a divergence occurred
before some specified date. Alternatively, we could specify upper
and lower bounds on calibration times (44) in an effort to
estimate ‘‘true’’ divergence time, but doing so would require the
incorporation of invariably subjective specifications of calibra-
tion time uncertainty. The results of our application of Bayesian
methodologies to real and simulated data, discussed above,
indicate that the absolute times of human–chimpanzee diver-
gence inferred by using a four-species construct are strongly
affected by the upper and lower bounds used, but these methods
are successful in correctly estimating ratios of time estimates for
different nodes in the phylogeny.

In fact, the estimated C.I.s from Bayesian analyses are unlikely
to be around the ‘‘true’’ divergence time, unless a probability
distribution around the range of times inferred from the fossil
record can be assigned (29). For example, if we have established
minimum and maximum values for calibration time but have
reason to believe from fossil evidence that the true divergence
time is closer to the former than the latter, then the time
distribution may be triangular or lognormal (29). In other cases,
the best we can do is to associate a standard deviation with the
calibration time and, if necessary, assume a normal or uniform
distribution. In some instances we may have evidence pointing
toward a certain shape of distribution, in which case the MBR
method can be used to explicitly specify this distribution. For
example, if we assume a linearly declining probability distribu-
tion with 23.8 Ma as minimum (and most probable) estimate of
ape–OWM and 35 Ma as its maximum, we obtain a 95% C.I. of
4.17–7.13 Ma. In this case, the C.I., rather than the actual date,
should be reported because the ad hoc form of distribution used
strongly determines the central value of the time estimated
rather than any biological knowledge.

Conclusions
Even when mean or true times of divergence between species are
difficult to estimate with molecular clocks, because of uncer-
tainties in fossil calibrations, minimum and relative times of
divergence can still be obtained. Here we have shown that the
divergence of chimpanzees and humans is such a case, because
of the current lack of robust calibration points. Our genome-
scale analyses show that the minimum time of that divergence
was very close to one-fifth of the ape–OWM divergence, with a
95% C.I. from �12% to �19% of that time. This result can be
used to test hypotheses that arise in the literature. For example,
if claims of late Miocene (�6 Ma) fossil hominids (15–17) are

Table 1. Confidence limits on the human–chimpanzee
divergence time for different calibration times for
ape–OWM divergence

Ape–OWM
calibration,* Ma

Human–chimpanzee
divergence, Ma

Time 95% C.I.†

23.8 4.98 4.38–5.94
25.0 5.22 4.55–6.20
27.0 5.54 4.89–6.60
29.0 5.96 5.20–6.98
31.0 6.33 5.55–7.39
33.0 6.67 5.85–7.78
35.0 7.02 6.13–8.37

*Ingroup RTTM used in the Bayesian analyses of the third codon positions
under a F84�� model in the MULTIDIVTIME software (21).

†The 95% C.I.s were obtained from 1,000 replicates of the MBR procedure
described in the text.

Fig. 4. The relationship of the lower and upper limits of the 95% C.I.s (as a
percentage of the estimated time) with the number of genes analyzed by
using the ML-distance approach (filled circles) and the Bayesian analysis (open
circles). Each point is an average based on computed C.I.s of 10 random subsets
of genes. The dashed line illustrates the trend of the Bayesian interval. Similar
results were obtained by using the data generated by computer simulation
based on the evolutionary parameters of the third positions in different
genes.
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correct, then the ape–OWM divergence occurred at least 24–25
Ma or earlier based on the 95% C.I. (Table 1). This date extends
the age of that latter divergence only slightly from the accepted
23.8 Ma. Conversely, if fossils of hominoids or OWM were
discovered and dated to 27 Ma, this would imply a minimum time
of divergence of between 4.9 and 6.6 Ma for chimpanzees and
humans. Because large gaps in the fossil record are not implied
in either case, they would be compatible with current under-
standing of the primate fossil record. In contrast, the recent
suggestion that some ape-like fossil teeth from Africa might be
from the African ape clade and that the human–chimpanzee
divergence time might be even older than 12.5 Ma (20) seems to
be extremely unlikely. This inference is because extrapolation of
the upper 95% confidence limit from Table 1, using this date,
implies a minimum ape–OWM divergence time of �55 Ma, �30

million years earlier than supported by current fossil evidence.
Similarly old molecular clock dates (13.5 Ma, based on mito-
chondrial DNA and using nonprimate calibration points) for the
human–chimpanzee divergence (12, 45) present the same prob-
lem. By enabling tests such as these, new fossil discoveries and
better radiometric dating of existing fossils provide the best
prospects for improved understanding of the timing of events in
hominid evolution.
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