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Abstract

Background: A unified analysis of DNA sequences from hundreds of tumors concluded that the driver mutations
primarily occur in the earliest stages of cancer formation, with relatively few driver mutation events detected in the
late-arising subclones. However, emerging evidence from the sequencing of multiple tumors and tumor regions
per individual suggests that late-arising subclones with additional driver mutations are underestimated in single-
sample analyses.

Methods: To test whether driver mutations generally map to early tumor development, we examined multi-
regional tumor sequencing data from 101 individuals reported in 11 published studies. Following previous studies,
we annotated mutations as early-arising when all tumors/regions had those mutations (ubiquitous). We then
inferred the fraction of mutations occurring early and compared it with late-arising mutations that were found in
only single tumors/regions.

Results: While a large fraction of driver mutations in tumors occurred relatively early in cancers, later driver
mutations occurred at least as frequently as the early drivers in a substantial number of patients. This result was
robust to many different approaches to annotate driver mutations. The relative frequency of early and late driver
mutations varied among patients of the same cancer type and in different cancer types. We found that previous
reports of the preponderance of early driver mutations were primarily informed by analysis of single tumor variant
allele profiles, with which it is challenging to clearly distinguish between early and late drivers.

Conclusions: The origin and preponderance of new driver mutations are not limited to early stages of tumor evolution,
with different tumors and regions showing distinct driver mutations and, consequently, distinct characteristics. Therefore,
tumors with extensive intratumor heterogeneity appear to have many newly acquired drivers.

Keywords: Driver mutation, Ubiquitous mutation, Private mutation, Somatic mutation
Background
Tumor cells accumulate numerous somatic mutations.
Some of these mutations directly contribute to tumor
growth and progression and are commonly referred to
as driver mutations. Knowledge of the relative timing of
driver mutations is essential for understanding cancer
progression as a whole and for optimizing treatment for
individual patients [1–4]. For this reason, much atten-
tion has been paid to identifying the distribution and
* Correspondence: s.kumar@temple.edu
†Equal contributors
1Institute for Genomics and Evolutionary Medicine, Sudhir Kumar, SERC 602A,
1925 N. 12th Street, Philadelphia, PA 19122, USA
2Department of Biology, Temple University, Philadelphia, PA 19122, USA
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This artic
International License (http://creativecommons
reproduction in any medium, provided you g
the Creative Commons license, and indicate if
(http://creativecommons.org/publicdomain/ze
frequency of driver mutations among tumor cell popula-
tions [5–7].
Mutations found in most cells of a tumor can be

detected by estimating the fraction of cancer cells har-
boring a particular variant, or cancer cell fraction (CCF)
[8]. This approach has been utilized to analyze the
extensive data available through the Cancer Genome
Atlas (TCGA), a comprehensive database that contains
genomic changes in hundreds of thousands of tumors
(single tumor genome sequencing results) from 33 types
of cancers [9]. When CCFs were estimated for driver
mutations found in tumors from TCGA, most driver
mutations were present at high CCF, meaning most
driver mutations were found in the majority of cells in a
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Table 1 Summary of data sources analyzed in the present study

Cancer type Study
(Reference)

Number of
Patients in Study

Mixed: Lung, pancreatic, and 11
other types

[32] 37

Brain (glioblastoma) [25] 10

Colorectal [27] 9

Prostate [31] 9

Kidney (clear cell renal cell carcinoma) [13] 8

Lung [14] 7

Endometrial [28] 6

Esophageal (with Barrett’s esophagus) [29] 5

Brain (glioma) [24] 5

Breast [26] 4

Ovarian [30] 1
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tumor [10]. Mutations found in a large proportion of
tumor cells are likely to have occurred at the earlier
stages of tumor growth, because such early-arising
mutations are inherited by all cells in a tumor following
clonal evolution [2, 11]. Therefore, it was inferred that
the majority (>70%) of driver mutations occur early in
tumor growth for all types of cancer surveyed [12].
However, tumors consist of heterogeneous cell line-

ages, each of which may be driven by different driver
mutations [1–3]. For example, a study of renal cell
carcinoma reported 73–75% of driver mutations to have
likely occurred at a later time in tumor evolution [13].
This study employed a different methodology to detect
early mutations, where variants from multiple regions of a
given tumor (M-seq) were analyzed. Using an M-seq ap-
proach, variants found in a majority of sampled regions are
classified as early (ubiquitous) mutations [6]. Additional
studies have employed M-seq methodology to study diffe-
rent types of cancer, and these studies have identified many
mutations that are private to one or only a few regions of a
tumor [14–21], or mutations that are present at different
points in time [22, 23]. This identification of many private
mutations indicates that single-tumor profiles, such as
those in the TCGA database, do not completely capture
the spectrum of late-arising driver mutations. Therefore,
conclusions based on analyses of TCGA data [12] may not
apply to all the cancers and/or patients.
Now that M-seq data from various cancers are available,

it is possible to comprehensively explore the relative pre-
ponderance of driver mutations arising in early and late
stages of tumor growth. Here we perform a meta-analysis
using samples from 101 individuals representing various
cancer types [13, 14, 24–32], which revealed that the
fraction of driver mutations occurring early in tumor
growth varies extensively among cancers as well as among
individuals. We evaluate the frequency of late-arising
driver mutations in primary and metastatic tumors.

Methods
We obtained sequencing read counts of mutant and wild
type alleles, and their chromosomal positions, for 101
tumor data sets from 11 published studies that contained
at least three tumor samples per patient (Table 1) [13, 14,
24–32]. Our analysis focused on single nucleotide variants
(SNVs) and insertions and deletions (indels) that arose
somatically in the tumors of individual patients. To iden-
tify mutations that likely affected cancer progression or
development (driver mutations), we first extracted muta-
tions in coding regions of the genome by mapping the
chromosomal position of each variant onto the reference
human genome (hg19) from the Ensembl database [33].
We excluded mutations in intergenic regions, because
their functional effects on cancer development are rarely
known. We also excluded synonymous mutations, because
these mutations are not expected to significantly affect
protein function.
To ensure that our findings regarding the distribution

of drivers are robust to methods of driver determination,
we used five schemes to determine mutations that are
cancer drivers. We first determined driver mutations
based on whether the affected gene has been previously
implicated in cancer. We annotated every mutation
occurring in a cancer-associated gene listed in the COS-
MIC cancer gene census [34, 35] as a driver (Driver
annotation type I). Among these genes, those without
functional annotation in cancer (oncogene or tumor
suppressor gene) could be false-positives. Therefore, we
applied a second, more stringent approach, in which we
used only known oncogenes and tumor suppressor genes
listed in COSMIC (Driver annotation type II).
Some sites in the genome are more frequently mutated

in cancer than others, and these somatic variant hot
spots are believed to play a role in cancer [36]. In our
third approach, we annotated driver mutations when
mutations were located within 15 nucleotides of somatic
variant hot spot (Driver annotation type III), because
mutations at hot spots and neighboring regions may be
cancer drivers. Variant hot spots were those identified as
individual substitution hot spots as presented in Chang
et al. [36], those mutated >10 individuals in the COS-
MIC database, or those mutated in at least two individ-
uals in our 101 datasets.
Furthermore, many computational methods have been

created to determine variants with functional roles in
cancer [37]. In the fourth approach, we used one such
driver mutation prediction tool, IntOGen [38] (http://
www.intogen.org/analysis). The IntOGen pipeline exa-
mines genes that frequently have mutations with high
functional impact and regions of the protein sequences
where mutations frequently occur (Driver annotation type

http://www.intogen.org/analysis
http://www.intogen.org/analysis
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IV). To predict driver mutations with IntOGen, we input
all mutations (point mutations and indels) with chromo-
somal positions, wild type and mutant nucleotides, and
strand information obtained from Ensembl database.
Lastly, it has been observed that genes that are causal in

one cancer type many not be causal in every cancer type.
Therefore, in annotation type V, we obtained a list of
cancer associated genes for each cancer type from Into-
Gen database [38] in order to designate driver mutations
following the approach outlined in annotation type I
above. For analysis of data from Zhao et al. [32], we used
cancer-associated genes identified for each patient by
Zhao et al. to maintain consistency with their analysis.
Before distinguishing between early vs. late-occurring

mutations, we made use of the extra power conferred by
the M-seq approach to detect potential sequencing errors.
Using Treeomics [39], we estimated the posterior prob-
ability that a putative variant read is actually present in a
tumor given the reference and mutant allele read counts
for multiple tumor samples. For each variant within a
tumor sector, we annotated a mutation as present if the
Treeomics-inferred posterior probability was greater than
0.95. We removed variants with a posterior probability less
than 0.95 in all tumor samples from a patient. Similarly, a
mutation was annotated to be absent if the Treeomics-
inferred posterior probability was less than 0.05.
To distinguish early from late-arising mutations, we

defined early-arising mutations as those that are found in
all samples (ubiquitous mutations), and late-arising muta-
tions as those that are private to only one sample (region-
specific or private mutations). This definition is more
stringent than the definition used in the previous TCGA
analysis [12], because it excludes mutations found in some,
but not all tumors. Consequently, mutations annotated to
be early-arising are expected to be found in the progenitor
of all tumor cells in a patient, and those designated late-
arising status are expected to have arisen in only one
Fig. 1 Overall timing of driver mutations. The fraction of driver mutations t
mutation annotation schemes (I–V, see Methods), a) including CpG sites, a
tumor in a patient. We refer to all other drivers to be of
intermediate origin. Note that early and late designations
refer to relative timing of occurrence of mutations, they
are not meant to convey absolute times. Supplementary
Additional file 1 shows designations of drivers using five
annotation schemes, chromosomal positions, count of
samples with mutant allele after Treeomics treatment, pa-
tient ID, and study information.

Results
Meta-analysis of driver mutation timing
We first pooled driver mutations from 101 patient data
sets from 11 studies [13, 14, 24–32] and identified early
drivers. Analyzing type I drivers (i.e., any mutation in a
cancer-associated gene [34, 35]), we found that only 26%
of all driver gene mutations have arisen early (Fig. 1a),
which indicates that most driver mutations did not
occur at the earliest stages of tumor growth. In fact, we
found that 74% of driver mutations were not early,
which is in contrast to results from TCGA analysis [12],
but consistent with the findings of Gerlinger et al. [13]
in clear cell renal carcinoma samples. However, our data
sample is 15 times larger than Gerlinger et al. [13] and
includes tumors from 21 types of cancers. These findings
were robust to the use of more stringent approaches to
driver gene determination (annotation type II to V): the
number of non-early driver mutations was always
greater than the number of early driver mutations.
Across annotation types, only about one-third of all
driver mutations occurred early.
Interestingly, we found relatively large numbers of

driver mutations to be late-occurring (33–45%), with the
number of late-driver mutations similar to or even
greater than the number of early-occurring driver muta-
tions (22–38%) (Fig. 1a). The remaining driver mutations
had intermediate origins. In these analyses, only annota-
tion type III predicted early driver mutations (38%) to be
hat are early (pink) and late (blue) are shown for each of the driver
nd b) after the removal of CpG sites
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larger than late driver mutations (33%), but still they are
very similar in numbers. That is, across M-seq cases,
late-occurring drivers are generally more frequently ob-
served than, or are equal in frequency to, early-arising
drivers. Analysis using the less stringent definition of
driver mutation (annotation type I) produced results
similar to the more stringent definitions (annotation
types II–V). Overall, we found the numbers of late-
arising driver mutations to be substantial.
False-positive detections of driver mutations are

expected to be high when mutations are located on
genomic positions with higher mutation rate, e.g., CpG
sites [40, 41]. Therefore, we obtained a list of CpG sites
in the human genome from UCSC sequence hg19 using
the Bioconductor R package, and removed driver muta-
tions that were located at these sites. We still observed
fewer driver mutations to have occurred early (22–37%)
than late (35–46%; Fig. 1b). So, we expect that our infer-
ences have not been affected by false-positive detection
of driver mutations at mutational hot spots.
Fig. 2 Fraction of driver mutations occurring at early and late time. Driver
a Fraction of all driver mutations that occurred early and late as inferred fro
a study, and a bar shows the average. Statistical tests (paired t-test) were p
different from late-driver mutations for a cancer type. Cancer types that ha
The difference in early and late driver mutation fractions for individual pati
removed because there were zero driver mutations after removing variants
(see Methods)
Driver mutation timing by cancer type and individual
differences
Although the total number of late driver mutations in
our data was similar to or greater than that of early
driver mutations, we found that the fraction of driver
mutations occurring at early stages varied extensively
among patients, studies, and cancer types. Very few early
drivers were detected in esophageal adenocarcinoma
data sets (average 6%, range 0–18%), but a large fraction
of drivers were early in breast cancer data sets (average
69%, range 50–100%; Fig. 2a). Similarly, the average frac-
tion of late mutations had a wide range, from 13% in
ovarian cancer to 81% (range 0–91%) in recurrent
glioblastoma.
Although patients showed similar fractions of early

and late driver mutations within specific cancer types,
some cancer types did not. For example, there is exten-
sive variation in the fraction of early and late mutations
identified in both glioblastoma data sets sequenced at
primary tumor and recurrence [24, 25]. Similarly,
mutations were annotated as those found in cancer-associated genes.
m multi-sample profiles. Each dot refers to data from one patient from
erformed to test if the fraction of early-driver mutations is significantly
ve significantly different fractions (P ≤ 0.05) are shown with asterisks. b
ents. Zero difference was found for 15 patients. Three data sets were
absent from all tumors after the application of Treeomics software



Gomez et al. BMC Cancer  (2018) 18:85 Page 5 of 10
analyses of primary tumor and multiple metastatic tu-
mors for each patient (Zhao’s [32] data) revealed exten-
sive variation among patients in the fraction of early and
late mutations. About half of the patients (48 patients)
exhibited a larger fraction of early driver mutations than
late driver mutations (Fig. 2b). Furthermore, we found
that a large number of patients (35 patients) exhibited a
greater fraction of late driver mutations than early driver
mutations. Therefore, the relative counts of early to late
driver mutations in a tumor varied both by tumor type
as well as on an individual basis.
We also analyzed the preponderance of late drivers

found in metastatic tumors, because mutations found in
metastatic tumors can be classified as occurring late
with greater certainty than those mutations found in the
primary tumors as well. We found that the fraction of
early driver mutations detected in this way remained
similar to those reported above (32%), and late drivers
still occurred at a high frequency (27%; Fig. 3a). That is,
the fraction of late driver mutations was only slightly
smaller than early driver mutations (27 and 32%), with
some patients showing larger numbers of late mutations
than early mutations (Fig. 3b).

Single versus multiple tumor profiles
We tested the hypothesis that the use of only a single
tumor per patient in previous analyses is the primary
Fig. 3 Fraction of early and late driver mutations in metastatic
tumors. a The fraction of driver mutations that are early and late. b
Difference between late-and early-driver mutation fraction. Each bar
represents a patient: pink marks patients that have a greater fraction
of early-driver mutations than late, and blue marks patients that
show an opposite trend. Nine patients showed zero difference
reason for the difference between our results and those
reported earlier (e.g., [12]). Using just one tumor sample
for each patient in our datasets and applying the driver
annotation scheme as in McGranahan et al. [12], we
found that 66% of the drivers were inferred to be early,
which is consistent with McGranahan et al. [12]’s finding
of 70% or more of drivers originating early-on (Fig. 4a).
This fraction decreased dramatically (to 45%) when
multiple samples are used for each patient from the
same data set. Therefore, the power to detect late driver
mutations is strongly dependent on the use of multiple
samples per patient.
In addition, very few patients had a greater fraction of

late-drivers compared to early-drivers when single sam-
ples were used (Fig. 4b). This comparison reveals that
the use of a single sample per patient leads to a different
result from that obtained using multiple samples, and
the power to detect late-occurring drivers increases with
additional sampling. This result is consistent with those
reported previously [6, 32, 42]: multiple sequenced
regions are necessary to determine the numbers of early
and late driver mutations [43]. Overall, the use of single
tumor samples provides poor scope to differentiate
driver mutation events that happen early in tumor
growth from late-arising driver mutations.

Robustness of early vs. late driver occurrence patterns
While the above patterns consistently showed that the
numbers of driver mutations occurring late are compar-
able to those that occurred early-on, it is important to
assess their robustness to a number of factors that com-
plicate analysis and interpretation of tumor genome
variation.
First, the observed variability in the timing of driver

mutation occurrence among patients may be caused by
technical issues, such as mutation calling methods,
tumor purity, and sequencing depth. This was the reason
for our use of Treeomics to exclude low quality SNVs
due to low sequencing depth.
Second, it is possible that the differences observed

between studies (cancer types) were caused by the differ-
ences in mutation calling methods among the studies, as
some studies may be able to detect mutations with lower
SNV frequencies than others. However, we often ob-
served that the fraction of early driver mutations as well
as late driver mutations varied among patients from the
same study analyzed with the same methodologies.
Therefore, any systematic error based on methodology
would appear to be minor, and such technical issues
should not strongly affect our conclusion.
Third, tumor purity could impact the annotation of

early and late drivers. Generally, though not necessarily,
the late-arising subclones will be in lower frequency
when the tumor purity is low. Therefore, if purity were



Fig. 4 Timing of driver mutations using single and multiple tumor samples. Driver mutations were annotated as those found in driver genes
identified in the previous report [12]. a Fraction of driver mutations occurring at early time. For the single sample data set (left), we generated
100 replicates, where we randomly selected a single sector per patient. For each replicate, we pooled driver mutations and computed the
fraction of early driver mutations (mean: 66%). For multiple samples (right), all samples available for each data set were used to compute the
fraction of early driver mutations (45%). The fraction of early drivers found in 100 replicates of single-tumor sampling was statistically greater than
the early driver fraction found using multiple samples by single single-sample t test (P < 10−15). b Difference between late-and early-driver mutation
fraction calculated using single-tumor samples (one replicate is shown). Each bar represents a patient: pink marks patients that have a greater fraction
of early-driver mutations than late, and blue marks patients that show an opposite trend. Eleven patients contained equal proportions of early and late
drivers, and 7 patients were removed as no driver mutations were identified

Fig. 5 The number of early driver mutations when some samples may
have wild-type alleles. We annotated mutations as early mutations,
when 100% (all), >80, >70, and >60% of samples had mutant alleles.
The number of late driver mutations are shown with the blue bar
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an issue, we would expect to experience a lesser power
to detect late drivers as compared to early drivers, as
early drivers are expected to manifest at higher frequen-
cies. Thus, our estimates of the relative excess of late
drivers are likely to be conservative.
Fourth, the number of early driver mutations may be

underestimated, because sequencing reads indicating
true early driver mutations may not be observed in one
of many samples by chance, despite high overall cover-
ages. While this dropout can occur, we expect it to be
far less common for early drivers than it would be for
private mutations, because they will generally occur with
lower frequency and in fewer multiregion samples than
the early drivers. Once again, our observation of the
relative excess of late drivers is conservative.
Fifth, copy number alternations (CNAs) will likely

cause difficulty in designating some early-arising drivers,
because the drivers can be lost by the loss of genomic
segments in some tumor samples. Ideally, a reanalysis of
all the primary data will be desired to identify this effect
fully. However, currently available methods are only
modestly accurate [44, 45]. Furthermore, CNAs can
occur multiple times during the clonal evolution, which
will result in complex evolutionary trajectories for SNVs
involved in CNAs. In general, we expect our results to
be not severely impacted by CNAs, because the number
of SNVs affected by loss of mutant alleles due to CNAs
is expected to be small due to the fact that most of
CNAs will not affect the presence of mutant alleles, i.e.,
mutant alleles will be lost only when segmental losses or
losses of heterozygosity (LOHs) lead to the loss of mu-
tant alleles. To examine the potential effect of CNAs on
the counts of early driver mutations, we annotated
mutations as ‘early,’ when >80, >70, and >60% of samples
had mutant alleles. Although the number of early driver
mutations was increased as we used a less stringent
criterion (i.e., allowing some samples without mutant
alleles), the number did not exceed the number of late
driver mutations (Fig. 5). Therefore, our conclusion
should be robust to CNAs.

Discussion
Our results establish that the fraction of driver muta-
tions occurring in the earliest stages of cancer varies
among patients as well as cancer types. We have shown
that, overall, the number of late driver mutations are
equal to or greater than early drivers in 44% of the
patients with metastatic tumors. This conclusion differs
from some previous reports arguing that the majority of
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driver mutations happen early in cancer progression [12]
or that tumors follow a neutral pattern of evolution after
initial growth propelled by the effects of early driver
mutations, i.e., intratumor heterogeneity is caused by
passenger mutations [46].
Our observation that the number of late driver muta-

tions is similar to early driver mutations does not inform
us about the rate of driver mutation occurrence per cell
or about the relative degrees of selective advantage con-
ferred by early and late drivers. The number of cells that
arise late in cancer progression (subclonal cells that have
subclonal variants) is expected to exceed the number of
clonal cells, so the number of subclonal variants is
expected to exceed the number of clonal variants, which
would result in the increased preponderance of muta-
tions. In fact, the number of driver mutations was
linearly correlated with the number of passenger muta-
tions for both early (Fig. 6a) and for late (Fig. 6b) muta-
tions (see also [32]). Actually, the number of early driver
mutations per all early mutations (fraction of driver
mutations) was similar to the fraction of late driver
mutations (Fig. 6c). This pattern was different from the
fractions of early and late driver mutations (Fig. 1).
Thus, even when the numbers of early and late driver
mutations are similar, it will not mean that the rate of
driver mutation occurrence or accumulation per cell is
the same.
Fig. 6 Numbers of driver mutations and passenger mutations. The numbe
driver and passenger mutations that are (a) early and (b) late. c The fractio
mutations) for early (pink) and late (blue)
We found that subclones with late drivers occur with
significant frequencies; the average observed mutant
frequency of late-arising mutations was 19% (with a
standard deviation of 14%). In fact, 34% of late muta-
tions were present at frequencies greater than 20%
(Fig. 7a). However, the relative degrees of selective
advantage conferred by early and late drivers is complex
to assess from such frequency data, as for example, sub-
clonal expansions may be caused by spatial constrain
without positive selection [46]. Furthermore, a compari-
son of the frequency of late driver and passenger muta-
tions is not able to inform about positive selection,
because passenger mutations hitchhike with driver
mutations—which would result in similar observed
mutant frequencies for both [47]. As expected, the
distribution of the observed mutant frequencies of late
drivers was similar to that of late passengers. This
pattern was also observed when all the data from all late
mutations was pooled together (Fig. 7a) and when the
comparison was restricted to individual regions that
contained at least 10 late driver mutations (>10 muta-
tions; Fig. 7b, c). However, it does appear that higher
intratumor heterogeneity in the late stages is a result of
the continued occurrence of genuine driver mutations
with functional effects on tumor growth, because recent
studies have found subclone-specific driver mutations in
tumors using single-cell sequencing techniques. For
r of mutations were pooled for each study. a and b The fractions of
ns of driver mutations over total mutations (driver and passenger



Fig. 7 Observed mutant frequencies of late mutations. Observed mutant frequencies were computed by dividing the number of mutant read
counts by the number of total read counts. a Mutaant frequency distribution where all late mutations were pooled together. b Histogram for one
region with the largest number of late driver mutations (163 mutations). The data are from region rec52 from the patient 1402 [25]. c Regional
average mutant frequencies of late drivers and late passengers for all Regions with at least 10 late driver mutations. Patient IDs are presented
along x-axis, and region IDs are shown within parentheses. The differences of mutant frequencies between driver and passenger were not statisti-
cally significant in any region (P > 0.05; t-test). Also, the results of all late mutations pooled from all regions are shown (All; P = 0.01 by t-test, while
the difference was only 1%). Error bars are standard errors. Driver and passenger mutations are shown with red and gray bars, respectively
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example, putative driver mutations were identified that
are unique to a subset of the clones of an individual
bladder tumor detected through single cell sequencing
[48]. We expect more detailed studies in the future to
test the patterns that we have observed in the meta-
analysis presented here.
Conclusions
In a meta-analysis of genome variation data from
multiple tumor in each patient, we find that the
numbers of late driver mutations are substantial: they
often exceed the number of early drivers. No previous
study has conclusively demonstrated this pattern, even
though they have indicated presence of driver muta-
tions in tumors. These results implicate driver muta-
tions in the continued development of aggressive
tumor growth and in progression during later events
such as recurrence, metastasis well beyond the initial
founding of the tumor. Finally, these results highlight
the importance of accounting for intratumor hetero-
geneity when evaluating the mutational histories of
tumor cell populations.
Additional file

Additional file 1: Our designations of drivers using five annotation
schemes, chromosomal positions, count of samples with mutant allele
after Treeomics treatment, patient ID, and study information are shown.
(XLSX 2387 kb)
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